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ABSTRACT

Human body composition is an expression of genetic and nutritional factors. It can change as a consequence of exogenous
influences such as training, disease, or diet and is therefore of particular interest to nutrition professionals. Two of the main
methods of estimating body composition in this review (hydrodensitometry and anthropometry) have been in use for decades,
but the third method (bioelectrical impedance) is more recent. The procedure, theoretical basis, assumptions, standard error of
estimates, and comparisons with other techniques are presented for each of the three methods. References to general and specific
populations are presented that illustrate regression equations for different ages, ethnic groups, and gender. The advantages and
disadvantages of the three methods are reviewed with reference made to the alternative compartment models. Other methods
(DEXA, infrared interactance) are briefly reviewed.Nutrition 1998;14:296–310. ©Elsevier Science Inc. 1998
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INTRODUCTION

Body composition is of interest to nutritionists because of the
impact that nutritional status, specific diet, exercise, disease, and
genetics can have on the major components of the human body.
These components can be considered at atomic, molecular, cellu-
lar, tissue-system, and whole body levels. As direct measurement
in vivo is not possible in humans, a series of indirect estimates of
body constituents have been developed. Most interest has been
directed at the two-compartment model, which divides the body
into fat mass and fat-free mass (FFM), largely because fat pro-
portion is a major issue in health. However, with the advent of
chemical and isotope-based methods, it has become possible to
subdivide the FFM into water, mineral, and protein constituents.1

Alternatively, the use of imaging methods has enabled a different
subdivision of body compartments into fat, muscle, bone, and
other soft tissue.2

A combination of magnetic resonance imaging (MRI) and
anatomic dissection has produced serial transverse images every 1
mm through the length of the human body. Such images are
internationally available on the Internet,3 therefore providing anat-
omy students, teachers, and body composition scientists with a
database of unparalleled precision. Such detailed information is

currently only available on one male and one female subject and
the cost of producing such material is, for most scientists, prohib-
itive. The issues of cost, availability, access, validity, portability,
ethical acceptability, and intervention need to be considered in
body composition research. This review will make reference to a
range of methods but will concentrate on three procedures that
have merit either in an epidemiological context (anthropometry
and electrical impedance) or as a common criterion method (hy-
drodensitometry). As each of these methods is used to estimate fat
mass and FFM components only, it is important to define these
terms, especially as fat and lipid are often used interchangeably.
Fat is the triacylglycerol family of chemical compounds, whereas
lipid is a more general term including other compounds such as
glycerophosphatides and sphingolipids.4 In the chemically based
two-component model, the fat compartment includes all lipids
(ether-extractable) with the FFM comprising all the remaining
constituents.

HYDRODENSITOMETRY

Hydrodensitometry or underwater weighing is essentially a
method to measure body volume. It is regarded as the most
reliable of available techniques for the estimation of body
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density and alternative procedures are often judged and vali-
dated against this procedure. Accepting the assumptions stated
later, it is recognized as a valid method of percentage body fat
estimation. It usually involves the use of a specially con-
structed tank in which the subject is seated on a suspended
chair or frame. Because the subject is required to exhale when
submerged it requires a high degree of water confidence. This
excludes approximately one-third of middle-aged women5 and
if the top of the tank is not near floor level it is extremely
difficult for excessively obese, pregnant, elderly, or disabled
subjects. Archimedes’ principle is applied by comparing the
mass of a subject in air and under water. This involves a
sensitive and continuous measurement of underwater mass for
which a single or multiple load cell configuration linked to a
computer is ideal, as the value will fluctuate due to movement
and level of exhalation. Total expiration is necessary, which
takes several trials, and account is taken of the remaining
residual volume, water temperature, and an estimate of gut
volume. For those unable to access an appropriate tank, it is
possible to construct a suitable frame within a swimming pool.
Autopsy scales have been used as an alternative to electronic
weighing methods, but the observer has to make rapid judge-
ments as the scale fluctuates around a mean value. The tech-
nique has been described fully elsewhere.6 – 8

Practical considerations for this method include when and
how to measure residual volume, what allowance to make for
the volume of gas in the gut, and the effect of pretest nutrition
and exercise. The residual gas volume accounts for about 2% of
the submerged volume, and the accuracy of this value becomes
critical to the calculation, where a very small change of density
produces a much larger change in the predicted percentage of
body fat.9 There is an appreciable day-to-day biological vari-
ation of residual volume in any given subject and this can
change the estimated body fat content by as much as 1%.10,11

Considerable controversy occurs over whether or not to mea-
sure the residual volume while in the tank or separately. Sub-
merging the body has been shown by some authors to increase
residual volume12,13 and by others to decrease the residual
volume.14 –19 Immersion was also found by several authors to
make no difference in residual volume.20 –25The actual method
depends largely on the facilities available and includes nitrogen
washout8 and oxygen dilution.26 If residual volume cannot be
measured by such direct methods Mayhew et al. (personal
communication) recommend estimates from 24% of vital ca-
pacity8 or from the anthropometric method of Polgar and Pro-
madht.28 Garrow et al.29 suggested that residual volume could
be measured by combining a body water displacement method
with an air displacement technique for the head using a ple-
thysmograph. This method eliminates the need for total sub-
mersion of the subject. Although the equipment is more com-
plex than that required for hydrodensitometry, it does not
require the additional equipment for measuring residual vol-
ume. The procedure requires minimal subject cooperation due
to the fact that the patient stands in water to the neck level and
the volume of air in the lungs and gastrointestinal (GI) tract is
measured by observing the pressure changes produced by a
pump of known stroke volume. Standard deviations of6 0.3 kg
were reported when replicate measures were made by this
method.

The volume of gas in the intestine is usually included in the
calculation as being 100 mL30 but should be increased for large
adults and decreased for children. Measurements are most repro-
ducible if taken in the fasting state. The prior consumption of food
can change the estimated body fat content by up to 1%,31 and
recent ingestion of carbonated drinks will also change the intes-
tinal estimate.32 When converted into body fat estimation this can

increase the error by 0.5%. Food consumption has doubled this
effect on body fat estimation. Changes will similarly be caused by
hyperhydration31 and dehydration.33 These effects will become
relevant if immediate previous activity caused fluid loss or when
high fluid retention occurs during premenstruation. As a mini-
mum, testing should be undertaken several hours after a meal,
with the subject defecating and urinating immediately prior to
measurement.34

Once body volume is established, whole body density is esti-
mated from the mass in air (Ma, kg) and the weight while sub-
merged (Ws, kg), with allowances being made for residual gas
volume in the lungs (Vr) and GI gas (100 mL). Density is then
calculated using the following equation

Db 5 Ma/{[W a 2 Ws/Dw] 2 Vr 1 0.1}V

where Dw is the density of water at the temperature of submersion.
The calculation of percentage body fat from body density

measures is based on the assumption that the body is composed of
two homogenous components—fat and fat-free tissue—each hav-
ing consistent densities. The main advantage of the two-compo-
nent model is that it allows measurement of the only constituent of
the fat-free body from which relative fat and fat-free body content
can be estimated. Where certain assumptions hold, this approach
offers a practical way to establish fat and fat-free body content.
The main limitations of the two-component model approach are
that separate estimates of various components of the body such as
muscle and bone are not made. Individual prediction errors of fat
content can be substantial, and estimates of body composition in
populations other than young adult males may under- or over-
estimate fat content. The use of the two-component model has led
to a lack of research in the development of new methods and
limited the potential usefulness of various laboratory methods in
estimating body composition in different populations. There has
been a move away from the two-component model toward three-
or four-component models with the aim of improving the predic-
tion of body fat from body density. It is therefore necessary that
new methods for accurate estimation of fat, fat-free body, and
muscle and bone content are continually developed and evaluated.

Body density, however, is not the preferred value for nutrition-
ists and other health professionals working with body composi-
tion. Percentage body fat is a measure to which more people can
relate and if the density of fat and lean were consistently 0.90 and
1.1 g cm23, respectively,35 the conversion would be relatively
simple. The average value of studies that measured these densi-
ties36–38 was 0.9168 g cm23 for fat and 1.0997 g cm23 for lean
tissue. Even this fails to account for more individual variations
such as the potential for athletes to have denser bone and mus-
cle,39,40 osteoporosis in the elderly,41 and different bone mineral
content in preadolescents.42

A variety of equations are available to estimate fat from body
density.38,43–45 The most commonly used of these are those of
Brozek et al.44

% body fat5 S4.57

D
2 4.142D 3 100

and Siri46

% body fat5 S4.95

D
2 4.5D 3 100

The equation developed by Brozek et al.44 for the conversion of
body density to body fat was based on the chemical composition
of reference man. The equation was developed from cadaver
chemical analysis and was proposed to be used in a young,
nonathletic, adult male population. Although the original equation
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has not been cross validated, it has been used in many research
studies. Since its development, this equation has subsequently and
frequently been applied to various populations including children,
the elderly, women, athletes, and various racial groups. Bones are
less dense in children, women, and older subjects of both sexes,
which leads to an overestimation of body fat. Lohman47 discussed
the need to limit the use of the Brozek equation and replace the
concept of reference man with population specific reference bod-
ies leading to additional development of population specific equa-
tions. This would enable more accurate estimates of fat content
from body density in these populations.

Body density is converted to a corresponding percentage of
body fat based on the assumption that the body is composed of
two homogenous compartments—fat and fat-free tissue—each
with a constant density. However, in reality, body fat comprises a
complex mixture of glycerides, sterols, phospholipids, and glyco-
lipids. Some of these constituents are more labile than others and,
therefore, the average density of fat varies between individuals
and also within a given individual at different times. These com-
plications are usually ignored in densitometric calculations.9

As long as the assumptions implicit in these calculations are
recognized then nutritionists could present body composition val-
ues in the form of percentage fat. However, if relative values are
needed it seems logical to retain the body composition data from
hydrostatic weighing as densities.

The validity of the underwater weighing technique has been
extensively reviewed, including the biological and technical
sources of error.48–51 The several sources of biological variation
can be compounded by technical errors in the body density mea-
surements. An estimate of the expected degree of association
between fat content and density can be made by combining the
technical and biological sources of variation. Biological error
associated with estimating the percentage fat from body density is
associated with the variability in the density and composition of
the fat-free body. This error must then be added to the error
associated with measuring or predicting body density to give the
total error in estimation of the true percentage fat. The error
associated with measuring or estimating body density is only part
of the problem and the accuracy in determining body fat is
ultimately limited by biological variation in the fat-free body.
Lohman42 suggested that hydrostatic weighing techniques, when
used to assess the percentage of body fat, may have a standard
error of estimate (SEE) as high as 2.7%, primarily because of
variations in the fat-free density within specific populations.

The main sources of technical errors that have been identified
in measurement of body density include variation in residual lung
volume, which appears to contribute the greatest source of error,
and smaller amounts of error from combined factors of variation
in body mass, underwater weighing, and measurement of the
water temperature.48

The hydrostatic method remains a somewhat fallible criterion
method. Signs of this fallibility have been attributed to the fact that
simple indices of obesity such as total body mass and circumfer-
ence measurements have shown closer correlations with skinfold
measurements than percentage body fat estimated by the hydro-
static technique.52 The technical and biological assumptions in-
herent in this method clearly indicate that they are most likely to
be violated at the extremes of fat percentages. Therefore, this
method is most appropriate for segments of the population that do
not exhibit the extremes, especially the excessively obese. Roche
et al.53 provide a review on the practicalities of estimating body
volume by underwater weighing.

The technical concerns of the hydrostatic weighing procedure,
not the least water confidence, have been reduced by alternative
body volume measurement such as acoustic plethysmography and
air displacement. Acoustic plethysmography54–56 has been used

predominantly in pediatric research. Air displacement has also
been used in infants,57 babies,58 and adults.59–61 The procedure
described by Gnaedinger et al.59 was abandoned because of high
sources of error from lack of control over temperature, pressure,
and relative humidity in the enclosed chamber. Gundlach and
Visscher61 controlled isothermal conditions but in doing so made
the procedure impractical for most subjects. More recently,62 a
method has been described that has overcome most of these
problems. The BOD POD Body Composition System, which uses
the relationship between pressure and volume to derive the body
volume of a subject seated in a fiberglass chamber, is described in
detail for inanimate objects.62 It produced an average coefficient
of variation (CV) of 0.026% over 2 d, with a SEE62 of 0.004 L for
volumes in the range 25–100 L. This new air displacement ple-
thysmograph was compared with hydrostatic weighing in 68
adults63 and was shown to be highly reliable and valid as a method
of estimating percentage body fat. The mean difference in per-
centage fat (BOD POD2 hydrostatic weighing) was20.3 6 0.2
(SEM). An advantage of this method of determining body com-
position is that it is quick and relatively simple to operate, and able
to measure populations to which hydrostatic weighing is not
appropriate such as the obese, elderly, and disabled.

Hydrodensitometry has been the experimental basis for the
two-component model of body composition assessment. Accurate
estimates of percentage body fat can be expected provided the
assumptions of proportions and densities are satisfied.64 In sub-
jects whose fat-free body density differs from the assumed value
of 1.10 g/mL, then the two-component model will be less satis-
factory. The use of isotope dilution to measure the water com-
partment, dual-energy x-ray absorptiometry to measure mineral
content and neutron activation analysis for protein has permitted
the quantification of the subdivisions of the fat-free component.
This has permitted the density of subgroups such as different
races, levels of body fatness, gender, and physical activity levels
to be estimated more accurately, largely as a result of the varying
proportions of mineral and water. Multicomponent models not
only refer to chemical constituents, but can also be used to
describe anatomical models, molecular models, and fluid meta-
bolic models. A more detailed discussion of multicomponent
models is found in Heyward and Stolarczyk65 and Heymsfield
et al.66

ANTHROPOMETRY

Anthropometric techniques for the estimation of body compo-
sition utilize measurements of skinfold thicknesses at various
sites, bone dimensions, and limb circumferences. These are used
in equations to predict percent body density, converted to body fat
using the equations shown above. The use of skinfolds to predict
body fat has become one of the most common laboratory and field
anthropometric techniques in body composition and nutritional
status assessment.67 There have been numerous regression equa-
tions developed that use some combination of anthropometric
measures as predictors of body density.68 Most have used skinfold
measures or some combination of skinfold and circumferences.
Few have used circumferences only.

The main purpose of skinfold measurements is to estimate
general fatness and the distribution of subcutaneous adipose tis-
sue. The extent that the subcutaneous adipose layer reflects total
body fat varies with age, gender, and population. This method
operates on the assumption that subcutaneous adipose tissue is
representative of the total body fat. This is not an unreasonable
assumption but there will be individual differences which will
invalidate the established regression equations. As the method
relies substantially on a limited number of skinfold sites, any
differences in adipose tissue distribution from the original vali-
dated equation will impact on the prediction. Therefore, any
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observed variation of adipose tissue distribition from the popula-
tion originally used in the production of the regression equation
should necessitate an alternative equation or method being used.

The accessibility of the subcutaneous fat layer and the nonin-
vasive nature of skinfold measurement has led to many skinfold
applications and derivations of formulae. These in turn have led to
well over 1000 published articles that have dealt directly or
indirectly with skinfold measurements. Numerous equations for
the prediction of body composition have been developed, using
skinfold measurements as part of the equation. There have been
well over 100 equations developed that use skinfold measure-
ments and other anthropometric dimensions in various populations
ranging from athletic to sedentary and from children to the elder-
ly.69–75 Most of these formulae have led to estimates of body
density, although some studies have attempted a direct prediction
of body fat.71–73,76The problems associated in choosing an ap-
propriate equation have been previously well documented. They
have included excessive reliance on stepwise regression analysis,
failure to consider the possible curvilinear relationship between
total body fat and skinfold data, and failure to account for the
effect of age on body fat distribution.73,74

Many of the skinfold prediction formulae developed are spe-
cific to a particular sample of the population, and are also depen-
dent upon the age, sex, nutritional status, genetic background, and
specialist activities.77–79

The most widely used equations are probably those of Durnin
and Wormersley,73 who tested various combinations of skinfolds
to produce the following formulae for body density. These equa-
tions assumed a logarithmic relationship between obesity and the
sum of bicep, tricep, suprailiac, and subscapular skinfolds. The
equations met several of the earlier criticisms with regard to a
fewer number of variables relative to the number of subjects; the
intercorrelation of the individual skinfold reading and the curvi-
linearity of the relationship between density and subcutaneous fat.

Males 20–69 years

D 5 1.1765 2 0.0744~log10 O4S!

Women 20–69 years

D 5 1.1567 2 0.0717~log10 O4S!

whereS is the sum of the tricep, bicep, superailiac, and subscap-
ular skinfolds. The equation assumes a logarithmic relationship
between this sum of skinfolds and adiposity.

As with many of the previous skinfold equations the variable
predicted by those of Durnin and Womersley73 is the body density
rather than the percentage body fat. It is, therefore, possible for
errors to occur in the calculation of predicted density and its
subsequent interpretation as a fat percentage. This error of esti-
mation has been reported to be63.5% in women and65% in men
relative to the hydrostatic criterion method.9 Shephard9 also re-
ported the importance of using age-specific equations because of
the slope of the relationship decreasing with age.

The equations of Durnin and Womersley73 and those of Jack-
son and Pollock74 are said to be “generalized” because their
development and application are from a wide range of ages and
fatness. Durnin and Womersley73 were the first to consider the
development of equations that could be used with more varied
populations. They published equations with a common slope but
adjusted the intercept to account for aging. Jackson and Pollock74

published generalized equations for males and females. They
extended the concepts of Durnin and Womersley73 and addition-
ally overcame some of the limitations of population-specific equa-
tions. The equations of Jackson and Pollock74 added age into the
prediction equation to account for the potential changes in the
ratio of internal to external fat and also bone density. In 1981,

Lohman48 extensively reviewed the relationship between skin-
folds, body density, and fatness. He agreed with the need for such
generalized equations but also stated the need for their cross-
validation when applied to specialized samples. Lohman48 formu-
lated seven principles of cross-validation analysis including the
use of comparable mean values and similar standard deviations for
predicted and measured densities. It was also suggested that SEE
should be reported rather than correlation coefficients because of
the fact that correlation coefficients are apt to be affected by
intersample variability of fatness whereas SEE is not. The other
principles relate to the problems of nonlinearity of the relationship
between skinfolds and body density and the need for large samples
to cross-validate.

Differences in procedures and equipment selection may also
contribute to systematic errors in cross-validation studies. Lohman
et al.47 showed that different caliper types may affect estimates.
This problem was also addressed by Sinning and Wilson,76 who
agreed with Lohman for the need to standardize equipment.
Sinning and Wilson76 also evaluated the use of generalized equa-
tions for college-aged women. They showed that each equation
had to be validated and evaluated on its own merits. In 1984,
Thorland et al.80 cross validated general curvilinear models as well
as selected linear models. They also found, as did Sinning and
Wilson,76 that different curvilinear equations were not equally
effective in estimating body density while some linear models
were fairly accurate. These studies have all identified the need for
cross-validation of such equations prior to their use on specialized
samples.

Several authors also carried out log transformation of their
skinfold data.72,81 The main reasons for these transformations
were skewing the data, measurement errors being greater for
thicker skinfolds than for thin skinfolds, and experimentally skin-
fold measurements not linearly related to body density. Nonlin-
earity differs from sample to sample but is quite significant in the
obese. It is, therefore, advisable to introduce such transformations
when the population under study includes subjects of extreme
body types.

The skinfold caliper has been the most frequent method of
measuring subcutaneous adipose tissue thickness. The popularity
of this techniques is attributed to the many advantages associated
with its use. These advantages include the fact that it is a nonin-
vasive and fairly pain-free technique and that the skinfold calipers
are inexpensive, easy to maintain, and simple and convenient to
use. They may be used in field testing as well as in the laboratory
due to their portability and they do not require extensive training
for reliable use. In order to ensure validity, proper procedures
must be used when obtaining anthropometric measures. Potential
sources of measurement error include caliper selection and tester
reliability. Tester reliability includes inter- and intrameasurement
error as well as the variance associated with selection of skinfold
site. A major limitation associated with skinfold measurements is
the failure to estimate simultaneously all possible sources of
measurement error. Different caliper types and testers have been
examined separately and it is these two major sources of error that
may interact and give different degrees of error variance for
different conditions.82,83

As with most body composition assessment techniques there
are limitations associated with skinfold measurements, which may
result in inappropriate estimates of the subcutaneous fat thickness
and consequently total body fat. These limitations have been well
documented and include factors such as the inability to palpate the
fat/muscle interface and the difficulty in obtaining interpretable
measurements in obese subjects.84–86 Other problems include
compression of the fatty tissue during measurement, the inability
to control inter- and intrasubject variations and the fact that
measurements may only be useful at certain sites.48,87 Interopera-
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tor variability as well as the use of different types of calipers has
also contributed to errors in measurement of the subcutaneous fat
layer.42

With so many prediction equations available it is difficult to
know which one to select. A full account of the merits of
different equations is provided by Brodie88; the categories
include generalized predication equations, population-specific
prediction equations, equations for infants and children, and
equations for athletes. The concept of population specific an-
thropometric regression equations for the estimation of body
composition is well known and well documented. Regression
formulae show that although they may meet suitable limits for
reliability, their applicability to different samples is poor re-
sulting in large errors in estimating individual values. The
population specificity of body composition prediction equa-
tions can be traced largely to the use of homogenous samples
that lack sufficient size. The validity of their findings rests on
the assumption that for each population studied the composi-
tion of the fat-free body is similar. It is assumed that the density
of the fat-free body is the same from one population to another.
Womersley et al.89 proposed that some of the differences
associated with population-specific equations are due to the
differences between males and females in their fat-free body
density with females having a lower fat-free density. This led
to the overestimation of fat content in females when the fat-free
body was taken to be the same as males. Their application is,
therefore, limited to specific subsamples. Validity coefficients
between predicted and measured body density values range
from r 5 0.72 to 0.84 for women and 0.85 to 0.89 for men.
Therefore, these formulae are said to be population specific and
their use for predictive purposes must be questioned. Recently,
generalized equations have been developed. This generalized
approach uses large heterogeneous samples and builds a re-
gression model to fit the data. The regression model accounts
for age and the nonlinear relationship between skinfolds, fat,
and body density. The major problem with population specific
equations is their limited generalizability. The main advantage
of the generalized approach is that one equation can replace
several population-specific equations without a loss of predic-
tion accuracy; they are valid for a greater range of age and body
composition than population-specific ones. Most prediction
equations are by the very nature of their data collection popu-
lation-specific but scientific economy can be achieved by using
generalized equations.68 They have been cross-validated in
males,74 females,90 and in athletes.76,91 It is essential that
equations using skinfold data are cross-validated on other sam-
ples from the same and other populations to determine its
general applicability. It is not possible to be certain that equa-
tions developed on one sample will predict body density with
the same degree of accuracy when applied to the data of a
different sample. The cross-validation process involves testing
prediction equations on samples other than the ones used in the
initial derivation. This process will provide information regard-
ing the true external validity of the equations. Several studies
have compared their prediction equations with other samples
and when the populations were similar in age, gender, and
fatness, correlations and SEEs were found to be similar.92–97

The strongest evidence in cross-validation of generalized equa-
tions with regard to their accuracy and validity appears to be
provided by the standard error when the equation is cross-
validated on the second sample. The closer the SEs are to each
other the more accurate and valid is the equation. As well as
reporting the SE, the SD of the predicted density value should
also be reported. There is a relationship between SEE and the
coefficient of determination (r2). It involves knowing the stan-
dard deviation of the criterion variable, which for percent fat is

often bigger in women, and ther2 between the variables being
measured. The SEE is calculated from the formula SEE (e.g.,
percentage body fat)5 SD =1.0 2 r2.98 Therefore, for males
with a mean and standard deviation for percent fat of 20.56
7.1%, and a correlation between variables of 0.58, the SEE is
5.78%. Although SEEs are not provided for each component
prediction model, Heyward and Stolarczyk65 make the case
strongly for their inclusion to evaluate the relative worth of a
regression equation. Jackson et al.90 caution the use of the
generalized equations for women over 40 years of age. The
validity of generalized regression equations was questioned by
Norgan and Ferro-Luzzi,99 as they found a statistically signif-
icant difference between five such equations. An alternative
strategy was to combine data from other sources70,100 –102into a
single regression equation using the sum of triceps, abdomen,
and subscapular skinfolds alone.

The development of population specific equations has shown
that age and gender are important sources of body density varia-
tion.70,103,104The effect of age has been shown to be significant
when individual differences in skinfold fat are statistically con-
trolled.74 Substantial gender differences in body density deter-
mined by hydrodensitometry have been reported in the litera-
ture.105 Body density differences between men and women have
largely been attributed to differences in fat patterning and distri-
bution, internal to external fat ratios, and gender specific essential
fat.48,104 Fat patterning refers to differences in the anatomical
placement of adipose tissue. The pattern of subcutaneous adipose
tissue is known to exhibit large variations between individuals.
Garn106 maintained that women carried a greater proportion of
subcutaneous fat than men, whereas Durnin and Womersley73

came to the opposite conclusion. Research on population specific
equations has shown that age, gender, and degree of fatness need
to be taken into account when estimating body density from
anthropometric variables. To provide valid estimates of body
composition it is, therefore, essential that equations representative
of the study sample are used.

Population-specific prediction equations have been produced
for college students,72,92,93,95,103,107,108 soldiers,109,110 male
youths,111 boys and girls separately,81,112obese girls,113 and pre-
menarcheal and postmenarcheal girls.114 Optimizing the regres-
sion equations have included such methods as stepwise regres-
sion,115 maximumr2 improvement,116 and factor analysis.117,118

Equations have been specially produced for infants and chil-
dren. Oakley et al.119 showed greater fat thicknesses in newborn
females compared with males and concluded that skinfold levels
could be a valuable indication of nutritional status in neonates.
Triceps and subscapular skinfolds have been shown to be adequate
predictors in older boys120 but not in girls. Older children have
been studied by various researchers,81,120–123 and Nelson and
Nelson124 found that the best predictor of fat was a combination of
triceps and subscapular. Two skinfolds were also found to be good
estimates of body density in 8- to 11-y olds122 but methodological
and biological variability in children still requires additional
examination.

In athletes, regression equations have been established for
distance runners,125 volleyball, hockey, synchronized swim-
ming,126 wrestlers,102 baseball, track and field, football, tennis,94

gymnasts,127 swimmers,126,128 male athletes,94,102,125and female
athletes.127–129

An excellent example of the process to select specific re-
gression equations for children, adults, seniors, the obese,
anorexics, athletes, and different racial groups is described by
Heyward and Stolarczyk.65 For example, not only does it
provide a generalized equation for white women aged 18 –55 y,
but the specific equation for an obese, Japanese, female group
can be accessed.130
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In addition to the choice of sites and regression equation, the
experience of the tester, the type of caliper, and the subject’s state
of hydration all need to be considered with care. Studies in caliper
type have shown that cost is not necessarily a good predictor of
performance. The issue of technical characteristics of available
skinfold caliper is debated fully in Brodie.88 For practical pur-
poses, ideally use the same caliper with an established technique
after checking the experimenter’s reliability and ensuring compa-
rable test conditions. Even having taken such precautions, the
measurement of extremely obese patients should proceed with
caution, ensuring that the caliper remains in one position over a
well-defined skinfold.

Biological variations include aspects of age, gender, overall
fatness, and body size. Older people have a greater total body
fat for a given skinfold thickness. Likewise, women have more
fat than men as a result of a higher level of sex-specific
essential fat. A greater proportion of fat is stored internally as
total fatness increases. Katch et al.131 propose that to compen-
sate for the biological variability caused by body size that both
surface area and skinfolds are included in body composition
estimation.

Lohman48 summarized the main sources of error in the predic-
tion of body fat from skinfold data as biological variations in the
proportion of subcutaneous fat (62.5%), biological variations in
the distribution of subcutaneous fat (61.8%) and technical mea-
surement errors (60.5%). Each source of error is independent and
so the total error is63.3% fat, slightly better than the figure
claimed for densitometry and of similar order to that obtained by
many of the more sophisticated indirect methods.

External body measurements such as diameters and circumfer-
ences can be used independently to estimate body fat or in com-
bination with skinfolds. One of the earliest workers was
Matiekga132 who used cadaver data to develop a series of equa-
tions, using external body measurements, to estimate four body
compartments of muscle, skin and subcutaneous fat, deep fat, and
viscera and bone. The masses of skin and subcutaneous tissue,
bone and muscle were estimated independently from a series of
empirical constants and anthropometric measurements. The other
component was determined by subtracting the sum of skin and
subcutaneous tissue, bone, and muscle from body mass. The
equations developed for estimating the four component models
are:

Skin1 subcutaneous adipose tissue mass (g)5 0.065S S/6 A

where S S was the sum of six skinfolds and A was the body
surface area (cm2).

Bone mass (g)5 1.2Q2H

where Q is the average diameters of the humoral and femoral
condyles, the ankle, and wrist in centimeters and H is the height in
centimeters.

Muscle mass (g)5 6.5r 2H

where r is the mean of the radii calculated from the maximal
circumferences of the arm, forearm, calf and thigh, and H is the
height, all in centimeters.

Deep fat and adipose tissue mass (g)5 0.206 M

where M is the body mass in grams. In each case, adipose tissue
mass refers to the total mass, not the fat within adipose tissue.

This four component anatomical model has been largely ne-
glected with the increasing popularity of the two component
model, which estimates the masses of the fat and fat-free compo-
nents of the body.

In 1979 Katch et al.131 suggested that total fat mass could be
estimated from skinfold thickness (SS), surface area (A), and a
population specific constant (K), which varied with the sum of 11
girth measurements. The equation developed was:

Fat mass (kg)5 A 3 SS3 K

In 1980 Drinkwater and Ross133 proposed some changes to
the constants that Matiekga had used. They had found that in an
athletic population the formulae of Matiegka showed errors of
8% in the prediction of total body mass. The main change to the
constants by Drinkwater and Ross was in the constant used in
the estimation of skin and subcutaneous fat. They used a
smaller coefficient of 0.036 rather than Matiekga’s original
0.065. The changes of the muscle and bone constants were
smaller; muscle changed from 6.5 to 6.41 and bone from 1.2
to 1.25. Applying these new constants to their data Drink-
water and Ross predicted total body mass with an accuracy
of 0.8%.

Drinkwater et al.134reported the results of correlations between
Matiekga’s original anthropometric estimates and the measure-
ments taken from the cadaver evidence of the Brussels study. It
was found that the Matiegka’s formulae when applied to the
cadaver data underestimated the mass of skin and subcutaneous
tissue by 21.9%, the mass of muscle by an average of 8.5%, and
the mass of visceral tissue by 11.6%. The mass of the bone
component was overestimated by 24.8%. Based on these findings
a new set of coefficients were developed for use in the original
formulae. The new co-efficients overestimated the fat content of
the females by 15.9% and underestimated the male fat content by
12.3%. It was evident that the results being obtained were only
specific to the sample of cadavers which were relatively elderly
subjects. Based on these findings, it became clear that there was a
need for the development of sex-specific equations.135 The pre-
diction of body composition from cadaveric skinfold sites pro-
duces theoretical concerns when applied to free-living humans.
One is that the body temperature of cadavers is lower, which could
affect compressibility of skin, and another is the natural dehydra-
tion that occurs even in a relatively fresh cadaver. The elastic
nature of skin is lost shortly after death and will contribute to skin
compression variability.

Assessment of muscle volume has been performed by anthro-
pometric methods such as circumference or girth measurements of
the limb. The thigh and arm are two of the sites where these
measurements have been obtained in the estimation of changes
that have resulted from disuse, orthopaedic dysfunction, and ex-
ercise training. Anthropometric techniques have been useful for
measuring body and limb volumes but have had a limited use in
the determination of component tissue volumes. The main prob-
lem that has been identified includes the fact that anthropometric
measurements are only indirect indicators of muscle volume, and
girth measurements cannot differentiate between components
within the circumference.136 One additional limitation is that any
circumference measurement has limited construct validity as it is
determined by a combination of bone dimensions, skin thickness,
body fat, and muscle volume.

The upper mid-arm circumference has been used in several
nutritional studies to assess protein and energy malnutrition.137–140

Unfortunately, a single circumference measurement confounds the
relative measures of fat, muscle, and bone. In 1973 Gurney and
Jelliffe,141 proposed a formula for calculating the upper arm
muscle cross-sectional area.

Muscle cross-sectional area5 (C 2 pT)2 /4p

where C was the maximum arm circumference over the triceps
and T was the tricep skinfold measurement. The problem with
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this formula is that there is no allowance made for the cross-
sectional area of the bone contained in the area. In 1982,
Heymsfield142 compared the formula of Gurney and Jelliffe141

against computed tomography measurements. They found that
at the maximum circumference of the triceps the cross-sec-
tional area of bone was 6.5 cm2 in women (17% of the total
cross-sectional area) and 10 cm2 in men (18% of the total
cross-sectional area).

In 1982 Jelliffe and Jelliffe143suggested that muscle volume of
the upper arm could be estimated as 20% of the upper arm length
multiplied by the muscle cross-sectional area from the formula of
Gurney and Jelliffe.141

There have been several studies108,144–148that have used an-
thropometric principles to calculate regional fat, lean tissue, bone
mass, and limb volumes. Segmental zone techniques have been
shown to be a valid method of estimating segmental lower limb
volumes in adult men and women.145,149 These volumes have
subsequently been converted to either a limb muscle volume or
percentage fat content. The theoretical development of the seg-
mental zone method for estimating total body volume and per-
centage fat is based on the intrinsic relationship that exists be-
tween body volume and body mass. Katch et al.150 and Weltman
and Katch108 were the first to establish this theoretical model for
the prediction of total body volume and, therefore, percentage
body and lean body mass. The main reason for the development of
this method was to try and overcome the problems that were
associated with previous procedures that had been developed to
predict body density, percentage fat, and lean body mass. They
demonstrated that there was an intrinsic relationship between
segmental volume, segmental circumferential measurement, and
body mass, showing that it was possible to predict total body
volume and percentage fat using circumference measurements,
and body mass. Regression equations were found not to be pop-
ulation specific and associated SE of less than66% for predicting
percentage fat in all samples of subjects were better than any
previously published equation.

In general, these calculations have been restricted to the limbs,
which have taken the form of four or more truncated cones, each
containing concentric cylinders. The basic principle underlying
this techniques is that the whole segment volume will equal the
sum of its part volumes. By taking the appropriate measurements,
the volume of each geometric shape can be calculated using
geometric formulae.

Jones and Pearson145 used a number of girth and height mea-
surements taken serially along the limb and then used a mathe-
matical model of truncated cones to calculate the volume of the
thigh. They suggested that the mathematical calculation of seg-
mental volumes could be used in place of water displacement or
conventional x-ray techniques. The volume of limb segments was
calculated using the formulae:

1/3L @a 1 b 1 Î~ab!#

where a and b were the areas of two parallel cross-sections
estimated from circumference measurements andL was the dis-
tance separating the two cross-sections. The volume of the foot
was calculated using the formula:

1/ 2L ~h.b!

whereL was the length of the foot,h was the height from the sole
of the foot to the first cross-section at the ankle, andb was the
average breadth of the foot. Correlations of 0.98 in men and 0.99
in women were found when the total limb volume was compared
with a water displacement criterion value. Muscle plus bone
volume was calculated by taking skinfold measurements at the
thigh and calf, and correcting cone dimensions for overlying fat.

Fat was calculated as total limb volume, minus “muscle plus
bone.” Comparison of the fat with a radiographic criterion found
correlations in the thigh to be 0.95 and 0.85 and in the calf 0.83
and 0.86 in men and women, respectively.

Weltman and Katch108 extended the technique of Jones and
Pearson to calculate segmental volumes of the arm and hand, thigh
and leg, the feet and the head and neck. They found segmental
volumes could be accurately predicted from circumference mea-
surements at the arm, thigh, and leg sites. They, therefore, sug-
gested that circumference measurements were good predictors of
total body density and percentage body fat.

Shephard et al.148 proposed the following formulae for the
estimation of limb volume, limb fat, limb muscle, and limb bone:

Limb volume (mL)5 (Sc2) L/62.8

where Sc2 was the sum of the square of five circumference
measurements (cm) andL was the length of the limb (cm).

Limb fat (mL) 5 (Sc/5 ~Ss/ 2n! L

whereSc was the sum of the five limb circumferences (cm),Ss
was the sum of skinfolds measured over the limb (cm),n was the
number of skinfolds taken over the limb, andL was the length of
the limb (cm).

Limb bone (mL)5 3.14R2L

whereR was the average bone radius of the limb, andL was the
length of the limb (cm).

In validation of proposed equations, Shephard et al.148 dem-
onstrated good correlation between maximum oxygen intake and
muscle volume in the lower limb, while the percentage of fat that
was calculated in the limbs coincided closely with percentage fat
estimated by the skinfold method.

Sady et al.151 and Freedson et al.152 suggested that total body
volume could be approximated from anthropometric measure-
ments made on 10 body segments using three geometric shapes.
Coefficients of correlation with hydrostatic weighing were high
(0.96 in females, 0.98 in males) but there were substantial sys-
tematic and random sources of error relative to the criterion, which
suggests that the accuracy of their methods is too low to provide
useful body composition information (5.466 1.86 L in women;
1.746 1.88 L in men).

The many technical difficulties associated with the accurate
measurement of skinfolds have resulted in studies that have used
circumference measurements as an additional means of predicting
body fat or as a means of adding precision to skinfold predic-
tions.95,153–156There have been different prediction equations de-
veloped using circumference measurements on each sex and dif-
ferent age groups. Although these equations have been cross-
validated on different samples with good results, they still appear
to be population specific and should not be used in the prediction
of body fat in individuals who appear extremely obese or ex-
tremely thin.157

The circumference-based prediction equations have been
found to be useful in ranking individuals within a group according
to their relative fatness. Katch et al.164 presented a series of
equations and constants for young and older men and women that
could be used in the prediction of percentage body fat. They
reported the error in the prediction of body fat associated with the
circumference equations to be6 2.5–4.0%. In view of these
relatively low errors, they suggested that the equations could be
particularly useful in circumstances where there is no access to
laboratory facilities.

It has been shown that the reliability of moderately trained
observers is substantially greater for circumference measurements
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rather than skinfold measurements.9 Nevertheless, the greater con-
struct validity of skinfold data has been found to outweigh the
negative impact of poor measurement reliability, and skinfold
predictions have been found to be more accurate than those based
on circumferences.74,122

There appear to be no studies that have used circumference
measurements to predict the volume of a body segment and
compare the calculated circumferential segmental volume with
volumes obtained from a water displacement technique.

BIOELECTRICAL IMPEDANCE

Bioelectrical impedance analysis (BIA) is based upon the
relationship between the volume of the conductor (i.e., the human
body), the conductor’s length (i.e., the subject’s height), the com-
ponents of the conductor (i.e., fat or FFMs) and its impedance (Z).
Impedance itself reflects frequency-dependent opposition to the
flow of an alternating electric current, and comprises of resistive
(R) and reactive capacitive (Xc) components, defined as the square
root of the sum of the squares of the resistance and reactance (Z5
[R2 1 Xc2]).159 Both R and Xc components are found in biolog-
ical systems, although Xc is usually very small relative to Z at
lower frequencies (,4%),160 so R and Z are often reported inter-
changeably. The distinction between Z and R becomes more
important with the advent of multifrequency analyzers, as Xc may
no longer remain so small as frequency increases.

BIA assumes that the volume of a conductor can be deducted
from measurements of its length (L) and resistance. This stems
from Ohm’s Law, which states that between two points of a
conductor, R5 V/I, where R is measured in ohms, V is measured
in volts and I, (current) in amperes. In a symmetrical isotropic
conductor, R is directly proportional to its length (L, cm), and
inversely proportional to its cross-sectional area (A, cm2), R 5
rL/A, where r is the specific resistivity measured in ohm centi-
meters. As volume (n) equals L3 A, algebraic rearrangement
shows thatn 5 rL2/R. Stature (S) is used as an index of the length
of the body, and S2/R or S2/Z forms the basis for predicting FFM
or total body water. This estimation assumes that the conductor is
a perfect cylinder with a uniform cross-sectional area, whereas, in
reality, there are five cylinders (excluding the head). Each cylinder
has a different cross-sectional area and, therefore, contributes a
different resistance.161 Additionally, the differences in cross-sec-
tional area are not proportional to the differences in percentage
body mass. The trunk, for example, may comprise 46% of body
mass, but has little influence (3%) on whole body resistance when
measured conventionally, the main influencing factors being the
arm and the leg.150 Variations in body proportions may, therefore,
enhance the error associated with percentage body fat predictions.
Differences in structure also affect the conduction of the current.
The human body as a conductor is highly anisotropic, especially in
the trunk, which additionally leads to an indication that the rela-
tionship between whole body resistance and the conductor volume
with its electrolytic concentration is not strictly linear. FFM pre-
dictions at the extremes of body fatness are less accurate,162 as
prediction equations tend to overestimate fat mass in the lean and
underestimate fat mass in the obese. Electrical conduction in
biological systems is mainly ionic,159 and proportional to fluid
volume and the number of free electrolytic ions.163 It is also
inversely related to temperature.164 This infers that the bioelectric
resistance is affected by changes in body geometry, volume,
temperature, and electrolytic concentration, and these effects
should be taken into consideration.

The overall conductivity of the human body is closely related
to lean tissue and has been validated with criterion methods such
as hydrodensitometry and skinfold measurement.165,166The tech-
nique involves attaching adhesive surface electrodes to specific
sites on the dorsal surface of the hand and anterior surface of the

ipsilateral foot of the subject who lies flat on a nonconducting
surface with legs abducted, preferably with the thighs not touch-
ing, although this may not be possible in extremely obese subjects.
It is important that there is no metal close to the subject that may
influence impedance readings (such as a metal frame on a hospital
bed, metallic jewelry) as it may exert an influence on high fre-
quency measurements,167 and that these standard test conditions
are maintained. The applied current is usually in the order of 500
mA for single (50 kHz) frequency machines, or 500mA to 1 mA
for multifrequency machines (5 kHz to 1 mHz), and tests times
may last from a few seconds for a single frequency scan to several
minutes for a full frequency scan. The raw outputs are generally
visible immediately on the analyzer (resistance and reactance),
and subsequently transmitted to a host computer whereby dedi-
cated software processes the data. To maintain regression data
accuracy, interchanging processing software from difference man-
ufacturer analysers should be avoided.

It has been used in a range of specific groups including the
elderly,168 children and adolescents,169–175the overweight,176–178

middle-aged,179 malnourished,180–182 dialysis patients,183–190 in-
fants,191,192 for nutritional analysis,193,194 during growth,195 in
eating disorders,196 for cancer patients,197 in ethnic groups,198,199

and in patients with cystic fibrosis.200

Bioelectrical impedance has been used to assess lean-body
mass in HIV-infected men,201 showing no statistically significant
results between the mean lean-body mass estimate by total body
electrical conductivity and those measured by BIA or a prediction
equation on the basis of body mass index. Ott et al.202reported that
phase angle alpha was the best single predictive factor for survival
in a 3-y study of patients with AIDS, and Kotler et al.203 reported
more accurate predictions of body cell mass using reactance rather
than the values reported from the BIA. Kotler et al.203 found that
modeling equations derived after logarithmic transformation of
height, reactance, and impedance were more accurate predictors
than equations using height2/resistance. Others have found that
BIA measurements within these patient groups is greatly depen-
dent upon the prediction equations used, with reported variations
in the FFM content of weight loss ranging from 55% by total body
water, 57% from skinfold thickness, 60% from dual energy x-ray
absorptiometry, to 65% and 78% using two different prediction
equations using BIA.204 The use of gender-dependant equations
also affects accuracy. Body composition within AIDS patients
using in vivo neutron activation analysis has shown high reliabil-
ity with 0.99 for total body chloride to 0.84 for total body phos-
phorous.205,206

It is recognized that the measurement of bioelectrical imped-
ance is influenced by other factors that should either be controlled
or reported. These include electrode configuration such as bipolar
or tetrapolar,207–209the menstrual cycle,210,211skin temperature,212

use of oral contraceptives,213 exercise-induced dehydration,33

prior food,214 and different body positions.215 If such features are
controlled the prediction errors to calculate body fat are 3–5%.
Most studies report that the impedance method is reliable and
valid,165,166,216–219although some report caution in the use of a
single frequency device in a clinical setting,220 and others found
that body mass alone estimated FFM as accurately as any of the
bioelectrical equations in lean males.221 The single frequency
machine may be replaced by multiple frequency analyzers that are
able to differentiate between total and extracellular fluid compart-
ments in the body.222–224This is based on the current flow at low
frequencies (5 kHz) passing primarily through extracellular fluids
and at higher frequencies (.200 kHz) penetrating all body tissues.
This will increase the value for assessing clinical and nutritional
status considerably. Multifrequency analysers have been shown to
produce significant improvements in the prediction of body wa-
ter225–229and improves the standardization of the method over the

BODY COMPOSITION MEASUREMENT 303



single frequency approach.215 It should be of particular value
when hydration states need to be monitored such as in renal
dialysis,230 or in the management of lymphoedema.231 A compar-
ison between the single frequency and multiple frequency ap-
proaches yield similar results.215 Comparisons with different sin-
gle frequency devices shows that some models record a lower
impedance value than others.240 It is interesting to note that cost
does not seem to be a major factor, mean differences of only
0.6%,232 between machines.

Bioelectrical impedance is used to estimate total body water
(TBW) measured by isotopic dilution techniques. In this instance,
the standard error of the estimate of TBW, under carefully con-
trolled conditions, is,2 L of water. This is less than a 4% error
for an adult comprising of 50 L of TBW. Prediction errors for
young adults, based on the coefficient of variation, have for FFM
been reported at 4% or less. Errors in the measurement of height
and weight, error in BIA measurement, error of measurement of
the criterion method, and errors from the prediction equation all
sum to produce this prediction error.

Although the standard error of estimates is at best reported as
2.5% in humans,233 its advantages such as speed of operation,
safety, portability and lack of intrusion make it an ideal tool for
epidemiological investigations.

Validation studies have generally involved healthy adults. The
elderly, youth, children, and neonates provide far more limited
data. Ethnic minority groups are less commonly reported than
Caucasian. Individuals who differ substantially from the reference
population will limit validity as will the accuracy of the measure-
ment of the criterion variable. Specific validation would be nec-
essary for any individuals who did not conform to the basic
assumptions applying to BIA measurement. These would include
any conditions causing asymmetry or producing localized changes
in tissue atrophy or perfusion.234

Baumgartner’s contribution53 reviews the assumptions, appli-
cability, equipment, measurement procedure, precision, and accu-
racy of the BIA method and is highly recommended.

Clinicians value knowledge of body composition in health and
illness because of the additional information provided compared
with height, mass and derived measures such as body mass index.
TBW’s predictive value is only valid in disease when the central
and peripheral body components are affected similarly. This is
likely to apply in moderate obesity, many noninflammatory dis-
eases, and in early HIV infection. In these and others, nutritional
status is likely to be the main use of the technique. Haemodialysis
is a probable area for BIA investigation as is any disturbance of
the intracellular/extracellular water ratio as in protein malnutri-
tion, injury, or inflammation. This whole area is, to date, poorly
researched and will need to be cautiously investigated as critically
ill patients will have variable ratios of TBW to FFM. Measure-
ment of nutritional replenishment for malnourished patients may
be a more productive line of investigation.

OTHER METHODS

A full review of techniques of body composition79 and a
critique on the variability in the measures of body fat235 are
outside the scope of this article and have been undertaken else-
where. It is, however, valuable to consider just two alternative
approaches briefly as they are gaining current popularity for body
composition assessment. The first is near-infrared interactance,
which is based on the principle of light absorption and reflection.
An infrared light beam is placed over the biceps muscle and
reflected energy from the fiberoptic probe is monitored by an
optical detector. It compares the light absorption properties of two
wavelengths and in combination with other anthropometric data
predicts body composition utilizing an appropriate regression
equation. It has been shown to be reliable236–238 and has been

validated with ethnic groups,239 in the middle aged,238 women of
varying ages,240 and in children and adults.239 Standard errors of
estimate were in the range 4.9–5.5%,237 and it was found that the
method underestimated the percentage body fat of obese wom-
en.238,240This was considered to be related to the bigger differ-
ences between skinfold and optical density values in sites of
higher fat depths.240 It is generally considered that additional work
needs to be undertaken with infrared interaction to demonstrate its
utility. More studies should be completed to cross-validate the
technique for general and specific populations. Its appeal, not
unlike impedance, is its lack of intrusion, its speed, and porta-
bility.

The final method to consider is that of dual energy x-ray
absorptiometry (DEXA). Originally developed for bone content
analysis, especially the clinical study of osteoporosis, it is now
being heralded as a potential criterion method for body composi-
tion. Compared with MRI, it is currently more widely available as
a research tool and is likely to be less expensive to operate and
maintain. DEXA has the advantage of being able to partition the
body into three components; namely bone mineral, fat and lean
tissue. This division is somewhat based on assumptions incorpo-
rated into the manufacturer’s software but the results when com-
pared with hydrodensitometry compare well, providing errors in
the equation used to calculate percent fat from density are ac-
cepted. Additional support for DEXA as a method of body com-
position measurement comes from the sum of the three compo-
nents that is within 1% of the actual body mass. The technology
of DEXA is reviewed by Nord and Payne241and validation studies
have been undertaken against potassium-40,242,243total body wa-
ter using deuterium dilution,243,244skinfolds,245–247hydrodensito-
metry,245,246,248–251bioelectrical impedance,245,247and even com-
pared with lard as a soft tissue substitute.252 It was also found to
have satisfactory short-term reproducibility.253 The general con-
clusions are that DEXA is a safe method for routine use in
humans,254 is precise with a low standard error of estimate247 and
has initial promise as a method for estimating body composi-
tion.255–257 It has already been used widely in addition to post-
menopausal women,258–260 by such groups as children,261–266

young women,267,268 the newborn,269,270men,271 athletes,256 and
growth hormone deficient adults.272Nonetheless, it is important to
appreciate within-manufacturer variability, which can be as high
as 15% for the mass of bone mineral.

Any user of DEXA for fat mass must remember that estimated
fat is lipid (the chemical component) not adipose tissue (the
anatomical component). Nonetheless, once validated against an
imaging criterion such as MRI, DEXA may prove to be a useful
addition to the body composition options. Any validation would
need to take account of the theoretical differences in the imaging
modalities.

SUMMARY

The range of options available for body composition measure-
ment includes chemical, electrical, physical, and anthropometric.
A number of these are restricted to research institutes that have
committed high capital investment such as whole body counters or
computer tomography scanners. Many nutritionists will find low-
cost systems that can be applied rapidly and noninvasively a
useful adjunct to their clinical experience. Body composition
using hydrodensitometry, surface anthropometry, bioelectrical im-
pedance, or infrared interactance provides evidence for fat and fat
free components, which is becoming increasingly popular in the
literature and in practice. This article provides an overview of the
current literature and gives a basis for future research, for purchase
of equipment or for making decisions to include body composition
as part of nutritional activity.
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